Schur and Power Sum Polytopes

Santiago Estupiñán Salamanca

Universidad de los Andes

with
Carolina Benedetti (Universidad de los Andes), Mario Sanchez (UC Berkeley)

March 16, 2021

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Hopf Algebras

A Hopf algebra (H, μ, Δ) is:

- An algebra. For instance $H:=\bigoplus_{n \geq 0} \mathbb{K} \mathcal{S}_{n}$, with $m: H \otimes H \longrightarrow H$:

$$
\begin{aligned}
m(132 \otimes 21) & =13254+13524+13542+15324+15342+15432 \\
& =51324+51342+51432+54132
\end{aligned}
$$

- A coalgebra.

$$
\begin{aligned}
\Delta(13254) & =1 \otimes 13254+1 \otimes 2143+12 \otimes 132+132 \otimes 21+1324 \otimes 1 \\
& +13254 \otimes 1
\end{aligned}
$$

- A bialgebra. The comultiplication and counity maps are algebra maps.

Hopf Algebras

Definition

A Hopf algebra $(\mathbf{H}, m, \Delta, u, \epsilon)$ is a bialgebra with a linear map
$S: \mathbf{H} \longrightarrow \mathbf{H}$ that is the inverse of the identity map $i d_{\mathbf{H}}$ in the algebra $\operatorname{Hom}(\mathbf{H}, \mathbf{H})$.

Hopf Algebras

Definition

A Hopf algebra $(\mathbf{H}, m, \Delta, u, \epsilon)$ is a bialgebra with a linear map
$S: \mathbf{H} \longrightarrow \mathbf{H}$ that is the inverse of the identity map $i d_{\mathbf{H}}$ in the algebra $\operatorname{Hom}(\mathbf{H}, \mathbf{H})$.

You should think of the antipode as a generalization of the Möbius function. Indeed, for $\mathbf{H}=\mathbb{K} \mathcal{P}$, and $\zeta(P):=1$ for all $P \in \mathcal{P}$:

$$
\mu=\zeta \circ S
$$

Hopf Monoids

A Hopf monoid (F, μ, Δ) is:

- A monoid. For instance $S[I]:=\{$ Set partitions on $I\}$, with $\mu_{A, B}: F[A] \times F[B] \longrightarrow F[A \sqcup B]:$

$$
\mu_{124,35}(124,35)=12435 .
$$

- A comonoid, with coproduct $\Delta_{A, B}: F[A \sqcup B] \longrightarrow F[A] \times F[B]$. We use the notation $\Delta_{A, B}(x)=\left(\left.x\right|_{A}, x / A\right)$.

$$
\Delta_{13,245}(12534)=(13,254)
$$

- A bimonoid.

$$
\Delta_{12,345}(12435)=(12,435)=\left(\left.\left.124\right|_{1,2} \cdot 35\right|_{1,2}, 124 / 1,2 \cdot 35 / 1,2\right)
$$

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Standard Permutahedra

Definition

Take I an arbitrary set, with $n:=|I|$. The standard permutahedron π_{I} is the convex hull of the set:

$$
P:=\left\{(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{\prime} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

Where $\mathbb{R}^{I}:=\operatorname{span}\left(e_{i}\right)_{i \in I}$.

Standard Permutahedra

Definition

Take I an arbitrary set, with $n:=|I|$. The standard permutahedron π_{l} is the convex hull of the set:

$$
P:=\left\{(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{\prime} \mid \sigma \in \mathcal{S}_{n}\right\} .
$$

Where $\mathbb{R}^{I}:=\operatorname{span}\left(e_{i}\right)_{i \in I}$.

Generalized Permutahedra

A generalized permutahedron is a "deformation" of the standard permutahedron.

Generalized Permutahedra

- For any two generalized permutahedra $\mathfrak{p} \in G P[A], \mathfrak{q} \in G P[B]$ one can define:

$$
\mathfrak{p} \cdot \mathfrak{q}:=\mathfrak{p} \times \mathfrak{q}
$$

Generalized Permutahedra

- For any two generalized permutahedra $\mathfrak{p} \in G P[A], \mathfrak{q} \in G P[B]$ one can define:

$$
\mathfrak{p} \cdot \mathfrak{q}:=\mathfrak{p} \times \mathfrak{q}
$$

- The face $\mathfrak{p}_{S, T}$ optimized by the linear functional $1_{S}=\sum_{i \in S} x_{i}$, is a generalized permutahedron:

$$
\mathfrak{p}_{S, T}=\mathcal{P}\left(\left.z\right|_{S}\right) \times \mathcal{P}(z / s)
$$

Generalized Permutahedra

- For any two generalized permutahedra $\mathfrak{p} \in G P[A], \mathfrak{q} \in G P[B]$ one can define:

$$
\mathfrak{p} \cdot \mathfrak{q}:=\mathfrak{p} \times \mathfrak{q}
$$

- The face $\mathfrak{p}_{S, T}$ optimized by the linear functional $1_{S}=\sum_{i \in S} x_{i}$, is a generalized permutahedron:

$$
\mathfrak{p}_{S, T}=\mathcal{P}\left(\left.z\right|_{S}\right) \times \mathcal{P}(z / s)
$$

Theorem (Aguiar, Ardila 2017)

The species of generalized permutahedra $G P$, endowed with the product and coproduct described previously is a Hopf monoid.

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Symmetric Functions

A symmetric function is a member of the ring $R\left[x_{1}, x_{2}, \ldots\right]$ of formal power series over countably infinite indeterminates, invariant under permutations of its subscripts.
For $n \geq 0$, we define:

- The homogeneous symmetric function as the symmetric function:

$$
h_{n}:=\sum_{i_{1} \leq i_{2} \leq \ldots \leq i_{n}} x_{i_{1}} \ldots x_{i_{n}} .
$$

- The elementary symmetric function, as the symmetric function:

$$
e_{n}:=\sum_{i_{1}<i_{2}<\ldots<i_{n}} x_{i_{1}} \ldots x_{i_{n}}
$$

- The power sum symmetric functions as the symmetric function:

$$
p_{n}:=\sum_{i} x_{i}^{n}
$$

Symmetric Functions

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, and $f \in \operatorname{Sym}$, we let $f_{\lambda}=f_{\left(\lambda_{1}, \ldots, \lambda_{k}\right)}$ signify:

$$
f_{\lambda}=f_{\lambda_{1}} \ldots f_{\lambda_{k}} .
$$

Theorem

The symmetric functions $\left(h_{\lambda}\right)_{\lambda},\left(p_{\lambda}\right)$, and $\left(e_{\lambda}\right)_{\lambda}$ are all bases for Sym as a vector space.

Symmetric Functions

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, and $f \in \operatorname{Sym}$, we let $f_{\lambda}=f_{\left(\lambda_{1}, \ldots, \lambda_{k}\right)}$ signify:

$$
f_{\lambda}=f_{\lambda_{1}} \ldots f_{\lambda_{k}} .
$$

Theorem

The symmetric functions $\left(h_{\lambda}\right)_{\lambda},\left(p_{\lambda}\right)$, and $\left(e_{\lambda}\right)_{\lambda}$ are all bases for Sym as a vector space.

There is yet another basis for Sym, specially relevant due to its connection to the representation theory of the symmetric group; namely, that of Schur functions:

$$
s_{\lambda^{\prime}}:=\left|e_{\lambda_{i}-i+j}\right|_{1 \leq i, j \leq k=\operatorname{len}(\lambda)}=\left|\begin{array}{cccc}
e_{\lambda_{1}} & e_{\lambda_{1}+1} & \cdots & e_{\lambda_{1}+k-1} \\
e_{\lambda_{2}-1} & e_{\lambda_{2}} & \cdots & e_{\lambda_{2}+k-2} \\
e_{\lambda_{3}-2} & e_{\lambda_{3}-1} & \cdots & e_{\lambda_{3}+k-3} \\
\vdots & \vdots & \vdots & \vdots \\
e_{\lambda_{k}-k+1} & e_{\lambda_{k}-k+2} & \cdots & e_{\lambda_{k}}
\end{array}\right|
$$

Symmetric Functions

Example:

$$
\begin{aligned}
& s_{(3,3,1)}=s_{(3,2,2)^{\prime}}=\left|\begin{array}{lll}
e_{3} & e_{4} & e_{5} \\
e_{1} & e_{2} & e_{3} \\
e_{0} & e_{1} & e_{2}
\end{array}\right|=e_{3} e_{2}^{2}-e_{3}^{2} e_{1}-e_{4} e_{1} e_{2}+e_{4} e_{3}+e_{5} e_{1}^{2}- \\
& e_{5} e_{2}
\end{aligned}
$$

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Motivation

- Sym has a Hopf algebraic structure given by the product and coproduct

$$
\mu(f, g):=f \cdot g, \quad \Delta\left(h_{n}\right):=\sum_{i=0}^{n} h_{i} \otimes h_{n-i}
$$

Motivation

- Sym has a Hopf algebraic structure given by the product and coproduct

$$
\mu(f, g):=f \cdot g, \quad \Delta\left(h_{n}\right):=\sum_{i=0}^{n} h_{i} \otimes h_{n-i}
$$

- Let Π be the submonoid of GP generated by standard permutahedra.

$$
\Pi \longrightarrow \bar{\Pi} \xrightarrow{\overline{\mathcal{K}}} \operatorname{Per} \xrightarrow{\cong} \text { Sym. }
$$

Motivation

- Sym has a Hopf algebraic structure given by the product and coproduct

$$
\mu(f, g):=f \cdot g, \quad \Delta\left(h_{n}\right):=\sum_{i=0}^{n} h_{i} \otimes h_{n-i}
$$

- Let Π be the submonoid of GP generated by standard permutahedra.

$$
\Pi \longrightarrow \bar{\Pi} \xrightarrow{\overline{\mathcal{K}}} \operatorname{Per} \xrightarrow{\cong} \text { Sym. }
$$

- Per and Sym are isomorphic. More precisely, through the morphism $\phi:$ Sym \longrightarrow Per, defined by $\phi\left(n!h_{n}\right)=\pi_{n}$.

Motivation

- Can we find a geometric object that encompasses the algebraic properties of the main bases of Sym?

Motivation

- Can we find a geometric object that encompasses the algebraic properties of the main bases of Sym?
- Can we arrive at compact descriptions of such objects? What does that tell us about the original symmetric function?

Motivation

- Can we find a geometric object that encompasses the algebraic properties of the main bases of Sym?
- Can we arrive at compact descriptions of such objects? What does that tell us about the original symmetric function?
- Is there a way to see the Pieri rule, or change of basis formulas geometrically?

Motivation

- Can we find a geometric object that encompasses the algebraic properties of the main bases of Sym?
- Can we arrive at compact descriptions of such objects? What does that tell us about the original symmetric function?
- Is there a way to see the Pieri rule, or change of basis formulas geometrically?
- At least for h_{n}, and e_{n} it is possible.

$$
\begin{gathered}
\phi\left(n!h_{n}\right)=\pi_{n} . \\
\phi\left(n!e_{n}\right)=(-1)^{n+1} \stackrel{\circ}{n}_{n} .
\end{gathered}
$$

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Elementary Polytopes

- The antipode of GP is given by:

Theorem (Aguiar, Ardila 2017)

The antipode of the Hopf monoid GP of generalized permutahedra on $\mathfrak{p} \in \mathbf{G P}[/]$ is:

$$
s_{l}(\mathfrak{p})=(-1)^{|/|} \sum_{\substack{\mathfrak{f} \subseteq \mathfrak{p} \\ \mathfrak{f} \text { is a face of } \mathfrak{p}}}(-1)^{\operatorname{dim}(\mathfrak{f})} \mathfrak{f}
$$

Elementary Polytopes

- The antipode of GP is given by:

Theorem (Aguiar, Ardila 2017)

The antipode of the Hopf monoid GP of generalized permutahedra on $\mathfrak{p} \in \mathbf{G P}[/]$ is:

$$
s_{l}(\mathfrak{p})=(-1)^{|/|} \sum_{\substack{\mathfrak{f} \subseteq \mathfrak{f} \\ \mathfrak{f} \text { is a face of } \mathfrak{p}}}(-1)^{\operatorname{dim}(\mathfrak{f})} \mathfrak{f} .
$$

- On the other hand, the antipode of Sym satisfies:

$$
s\left(h_{n}\right)=(-1)^{n} e_{n} .
$$

Elementary Polytopes

- The antipode of GP is given by:

Theorem (Aguiar, Ardila 2017)

The antipode of the Hopf monoid GP of generalized permutahedra on $\mathfrak{p} \in \mathbf{G P}[/]$ is:

$$
s_{l}(\mathfrak{p})=(-1)^{|/|} \sum_{\substack{\mathfrak{f} \subseteq \mathfrak{f} \\ \mathfrak{f} \text { is a face of } \mathfrak{p}}}(-1)^{\operatorname{dim}(\mathfrak{f})} \mathfrak{f} .
$$

- On the other hand, the antipode of Sym satisfies:

$$
s\left(h_{n}\right)=(-1)^{n} e_{n}
$$

- Thus,

$$
\phi\left((-1)^{n} n!e_{n}\right)=\phi\left(s\left(n!h_{n}\right)\right)=s\left(\phi\left(n!h_{n}\right)\right)=s\left(\pi_{n}\right)=-\stackrel{\pi}{\pi} .
$$

Example

Example

In Per the exact faces that show up in the previous sum are ambiguous.

Example

In Per the exact faces that show up in the previous sum are ambiguous.

A convention

- This result suggests that we should define the polytopes associated to the elementary symmetric functions, as $\phi\left(n!e_{n}\right) \in P e r$.

A convention

- This result suggests that we should define the polytopes associated to the elementary symmetric functions, as $\phi\left(n!e_{n}\right) \in P e r$.
- How can we associate in a uniform way an element of Per to a given symmetric function?

A convention

- This result suggests that we should define the polytopes associated to the elementary symmetric functions, as $\phi\left(n!e_{n}\right) \in P e r$.
- How can we associate in a uniform way an element of Per to a given symmetric function?

Definition

Let $f \in \operatorname{Sym}_{n}$, and c be the coefficient of the expansion of f in the $\left(h_{\lambda}\right)_{\lambda}$ basis. The polytope associated to that function is $\phi\left(\frac{n!}{c} f\right) \in P e r$, under the isomorphism $\phi:$ Sym $\xrightarrow{\sim}$ Per, if $c \neq 0$, and $\phi(n!f)$ if $c=0$.

Elementary Polytopes

Theorem (Aguiar, Ardila 2017)

The Elementary Polytope \mathcal{E}_{n} is the interior of the $(n-1)$-dimensional permutahedron up to a sign:

$$
\mathcal{E}_{n}=(-1)^{n+1} \dot{\pi}_{n}
$$

Elementary Polytopes

Theorem (Aguiar, Ardila 2017)

The Elementary Polytope \mathcal{E}_{n} is the interior of the $(n-1)$-dimensional permutahedron up to a sign:

$$
\mathcal{E}_{n}=(-1)^{n+1} \stackrel{\pi}{n}_{n}
$$

Elementary Polytopes

Symmetric Function	Associated Polytope
Homogeneous symmetric functions	The standard permutahedron π_{n}
Elementary symmetric functions	The standard permutahedron $(-1)^{n+1} \pi_{n}^{\circ}$
Power sum symmetric functions	$?$
Schur functions	$?$

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Poset of set partitions

Figure: Hasse diagram of the partition lattice of 4 elements as seen on Formal approaches to a definition of agents. Biehl, Martin. (2017)

Poset of set partitions

Figure: Hasse diagram of the partition lattice of 4 elements as seen on Formal approaches to a definition of agents. Biehl, Martin. (2017)

The Möbius function of this poset is known. It is given by:

$$
\mu_{*}(0, \omega)=(-1)^{|\omega|}(|\omega|-1)!
$$

Power Sums

- By the work of Doubilet,

$$
p_{n}=\frac{1}{\mu_{*}(0,1)} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1)\left(\omega_{1}!\right) h_{\omega_{1}} \ldots\left(\omega_{k}!\right) h_{\omega_{k}}
$$

Power Sums

- By the work of Doubilet,

$$
p_{n}=\frac{1}{\mu_{*}(0,1)} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1)\left(\omega_{1}!\right) h_{\omega_{1}} \ldots\left(\omega_{k}!\right) h_{\omega_{k}}
$$

- By our convention, the polytope associated to the Power polytopes is given by:

$$
\mathcal{P}_{n}=\phi\left((n-1)!p_{n}\right)=(-1)^{n-1} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1) \pi_{\omega_{1}} \ldots \pi_{\omega_{k}}
$$

Power Sums

- By the work of Doubilet,

$$
p_{n}=\frac{1}{\mu_{*}(0,1)} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1)\left(\omega_{1}!\right) h_{\omega_{1}} \ldots\left(\omega_{k}!\right) h_{\omega_{k}}
$$

- By our convention, the polytope associated to the Power polytopes is given by:

$$
\mathcal{P}_{n}=\phi\left((n-1)!p_{n}\right)=(-1)^{n-1} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1) \pi_{\omega_{1}} \ldots \pi_{\omega_{k}}
$$

Remark

Different set partitions with the same type are going to be taken into account twice in the index of the sum above.
Accordingly, there will be grouping of terms.

Power Sums

Lemma

Let ω be a given set partition. The number of faces of π_{n} with an associated set composition such that 1 belongs to the first part, and whose integer partition is equal to the integer partition affiliated to ω, is $\left|\mu_{*}(\omega, 1)\right|=(|\omega|-1)$! where $|\omega|$ is the number of parts of ω.

Power Sums

Lemma

Let ω be a given set partition. The number of faces of π_{n} with an associated set composition such that 1 belongs to the first part, and whose integer partition is equal to the integer partition affiliated to ω, is $\left|\mu_{*}(\omega, 1)\right|=(|\omega|-1)!$ where $|\omega|$ is the number of parts of ω.

$$
\mathcal{P}_{n}=(-1)^{n-1} \sum_{[n] \leq \omega} \mu_{*}(\omega, 1) \pi_{\omega_{1}} \ldots \pi_{\omega_{k}}
$$

Remark

The facets showing in the expansion are half of all the facets of their type.

Power Sums

Theorem (Benedetti, E., Sanchez)

The Power Polytopes \mathcal{P}_{n} are the whole permutahedron $(-1)^{n-1} \pi_{n}$ without half of its facets. Concretely, the permutahedron π_{n} up to a sign, without those of its facets with corresponding set composition S satisfying that 1 belongs to its first part.

Power Sums

Theorem (Benedetti, E., Sanchez)

The Power Polytopes \mathcal{P}_{n} are the whole permutahedron $(-1)^{n-1} \pi_{n}$ without half of its facets. Concretely, the permutahedron π_{n} up to a sign, without those of its facets with corresponding set composition S satisfying that 1 belongs to its first part.

- Whenever \mathfrak{p} and \mathfrak{q} are faces with $\operatorname{dim}(\mathfrak{p})=\operatorname{dim}(\mathfrak{q})$ their sign will be the same.

Power Sums

Theorem (Benedetti, E., Sanchez)

The Power Polytopes \mathcal{P}_{n} are the whole permutahedron $(-1)^{n-1} \pi_{n}$ without half of its facets. Concretely, the permutahedron π_{n} up to a sign, without those of its facets with corresponding set composition S satisfying that 1 belongs to its first part.

- Whenever \mathfrak{p} and \mathfrak{q} are faces with $\operatorname{dim}(\mathfrak{p})=\operatorname{dim}(\mathfrak{q})$ their sign will be the same.
- It is enough to understand the behaviour of faces with 1 in their first part, in relation to the faces that lack it.

Power Sums

Theorem (Benedetti, E., Sanchez)

The Power Polytopes \mathcal{P}_{n} are the whole permutahedron $(-1)^{n-1} \pi_{n}$ without half of its facets. Concretely, the permutahedron π_{n} up to a sign, without those of its facets with corresponding set composition S satisfying that 1 belongs to its first part.

Power Sums

Theorem (Benedetti, E., Sanchez)

The Power Polytopes \mathcal{P}_{n} are the whole permutahedron $(-1)^{n-1} \pi_{n}$ without half of its facets. Concretely, the permutahedron π_{n} up to a sign, without those of its facets with corresponding set composition S satisfying that 1 belongs to its first part.

Example:

Figure: The Power Polytope \mathcal{P}_{3}

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Admissible Diagrams

Definition

A staircase box diagram of degree n is a subset of $\{(i, j) \mid 1 \leq j \leq i \leq n\}$.

Admissible Diagrams

Definition

A staircase box diagram of degree n is a subset of $\{(i, j) \mid 1 \leq j \leq i \leq n\}$.
A diagram D is admissible if for all its points (i, j), from now on boxes, one has:

$$
j \leq k \leq i \Longrightarrow(i, k) \in D
$$

Admissible Diagrams

Definition

A staircase box diagram of degree n is a subset of $\{(i, j) \mid 1 \leq j \leq i \leq n\}$.
A diagram D is admissible if for all its points (i, j), from now on boxes, one has:

$$
j \leq k \leq i \Longrightarrow(i, k) \in D
$$

Admissible Diagrams

Definition

An admissible move between two staircase box diagrams D and D^{\prime} is a move which transfers h boxes from row a in D to row $b(b>a)$ in D^{\prime}, satisfying that for all $a \leq c \leq b$:

$$
r(c) \geq r(a)+(c-a) \quad \text { or } \quad r(c) \leq r(a)-h+(c-a)
$$

Where $r(c)$ is the number of boxes on row c.

The Poset D_{λ}

Winkel's Expansion

Theorem (Winkel, 1998)

Given a partition λ, and n the degree of its diagram D_{λ}, one has that the Schur function $s_{\lambda^{\prime}}$ can be expressed as:

$$
s_{\lambda^{\prime}}=\sum_{D \in \mathcal{D}(\lambda)}(-1)^{\rho(D)} e_{r_{D}(1)} \ldots e_{r_{D}(n)}
$$

Where ρ is the rank function of the poset with $\rho\left(D_{\lambda}\right)=0$, and $r_{D}(i)$ the number of boxes of D in row i.
Also, $\mathcal{D}(\lambda)$ is isomorphic to a principal order ideal of the Bruhat order on \mathcal{S}_{l}, where l is the length of λ.

Winkel's Expansion

- For elementary symmetric functions instead of standard elementary monomials.

Winkel's Expansion

- For elementary symmetric functions instead of standard elementary monomials.
- The non-trivial terms of the Jacobi-Trudi determinant are in correspondence with the diagrams of $\mathcal{D}(\lambda)$.

Figure: An admissible diagram corresponding to $e_{3} e_{2}^{2} e_{1}$

Figure: An admissible diagram corresponding to $e_{1} e_{4} e_{2} e_{1}$

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Schur Polytopes

According to our convention, the Schur polytope \mathcal{S}_{λ} is given by:

$$
\begin{aligned}
\mathcal{S}_{\lambda} & =n!\phi\left(\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} e_{r_{D}(1)} \ldots e_{r_{D}(n)}\right) \\
& =n!\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} \frac{\stackrel{\circ}{\pi}_{r_{D}(1)}}{r_{D}(1)!} \cdots \frac{{\stackrel{\circ}{r_{D}}(n)}^{r_{D}(n)!}}{} .
\end{aligned}
$$

Schur Polytopes

According to our convention, the Schur polytope \mathcal{S}_{λ} is given by:

$$
\begin{aligned}
\mathcal{S}_{\lambda} & =n!\phi\left(\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} e_{r_{D}(1)} \ldots e_{r_{D}(n)}\right) \\
& =n!\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} \frac{\stackrel{\circ}{\pi}_{r_{D}(1)}}{r_{D}(1)!} \cdots \frac{{\stackrel{\circ}{r_{r_{D}}(n)}}^{r_{D}(n)!}}{} .
\end{aligned}
$$

- The coefficients of the sum are the number of faces of π_{n} with associated composition ($\left.r_{D}(1), \ldots, r_{D}(n)\right)$.

Schur Polytopes

According to our convention, the Schur polytope \mathcal{S}_{λ} is given by:

$$
\begin{aligned}
\mathcal{S}_{\lambda} & =n!\phi\left(\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} e_{r_{D}(1)} \ldots e_{r_{D}(n)}\right) \\
& =n!\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} \frac{\stackrel{\circ}{\pi}_{r_{D}(1)}}{r_{D}(1)!} \ldots \frac{{\stackrel{\circ}{r_{r_{D}}(n)}}^{r_{D}(n)!}}{}
\end{aligned}
$$

- The coefficients of the sum are the number of faces of π_{n} with associated composition ($\left.r_{D}(1), \ldots, r_{D}(n)\right)$.
- Could it be that for each associated composition there is only one admissible diagram associated to it?

Schur Polytopes

According to our convention, the Schur polytope \mathcal{S}_{λ} is given by:

$$
\begin{aligned}
\mathcal{S}_{\lambda} & =n!\phi\left(\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} e_{r_{D}(1)} \ldots e_{r_{D}(n)}\right) \\
& =n!\sum_{D \in \mathcal{D}\left(\lambda^{\prime}\right)}(-1)^{\rho(D)} \frac{{\stackrel{\circ}{\pi_{r_{D}}(1)}}^{r_{D}(1)!} \ldots \frac{{\stackrel{\circ}{r_{r_{D}(n)}}}^{r_{D}(n)!}}{}}{} .
\end{aligned}
$$

- The coefficients of the sum are the number of faces of π_{n} with associated composition ($\left.r_{D}(1), \ldots, r_{D}(n)\right)$.
- Could it be that for each associated composition there is only one admissible diagram associated to it?
- Yes!

Schur Polytopes

Definition

Suppose that $M=\left(e_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}$ is fixed, and let w be a word over the alphabet $\left(e_{k}\right)_{k \in \mathbb{N}}$. If w is the word of a permutation σ, then for all i, j :

$$
w_{i}+j \neq w_{i+j}
$$

Schur Polytopes

Definition

Suppose that $M=\left(e_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}$ is fixed, and let w be a word over the alphabet $\left(e_{k}\right)_{k \in \mathbb{N}}$. If w is the word of a permutation σ, then for all i, j :

$$
w_{i}+j \neq w_{i+j}
$$

Lemma

Let $M=\left(e_{\lambda_{i}-i+j}\right)_{1 \leq i, j \leq n}$ be fixed, $e_{\lambda_{\sigma(1)}-\sigma(1)+1} \ldots e_{\lambda_{\sigma(n)}-\sigma(n)+n}$ be a term of the determinant $|M|$ for some $\sigma \in \mathcal{S}_{n}$, and w be the word of σ. Then $e_{i_{1}^{\prime}} \ldots e_{i_{n}^{\prime}}$ is a term of the determinant $|M|$ if and only if the word of the permutation $\omega(k):=i_{k}^{\prime}$ satisfies:

$$
\left\{k \mid \exists!j \in \mathbb{Z}:\left(w_{\sigma}\right)_{k}+j=\left(w_{\omega}\right)_{(k+j)}\right\}=[n]
$$

Where w_{k} denotes the k-th entry of the word w.

Schur Polytopes

Theorem (Benedetti, E., Sanchez)

The Schur polytope \mathcal{S}_{λ} is the polytope described by the expression:

$$
\mathcal{S}_{\lambda}=\sum_{\substack{\mathcal{F} \leq \pi_{n} \\ \exists D: \operatorname{type}(\bar{D})=\operatorname{type}(\mathcal{F})}}(-1)^{\operatorname{asc}(D)+\operatorname{dim}(\mathcal{F}) \mathcal{F}}
$$

Where the sum is over the faces \mathcal{F} such that there exists an admissible diagram D with the said condition.

Examples

According to the previous theorem, the Schur polytope \mathcal{S}_{λ} for $\lambda=(2,1)$ is:

Diagram

Ascents

Dimension

1

2

0

1

So that:

Examples

According to the previous theorem, the Schur polytope \mathcal{S}_{λ} for $\lambda=(3,1)$ is:

2

1

1

2

0

1

Diag.

Asc.

Dim.

Examples

Examples

Example

Let λ be a hook partition $\lambda=(m, 1, \ldots, 1)$. For any such partition the poset $\mathcal{D}(\lambda)$ has a remarkably simple form, namely, it is isomorphic to the filter generated by the set compositions whose integer composition corresponds to λ, in the poset $S C$. Geometrically, this means that \mathcal{S}_{λ} is the polytope that has as faces all the faces of the permutahedron of the form $\pi_{m} \times \pi_{1} \times \ldots \times \pi_{1}$, as well as all the faces that contain them.
Moreover, all those faces show up with sign -1 .

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

The Littlewood-Richardson Coefficients

- Since the Schur functions are a basis for the symmetric functions, we can ask how to expand the product of Schur functions in that basis.

The Littlewood-Richardson Coefficients

- Since the Schur functions are a basis for the symmetric functions, we can ask how to expand the product of Schur functions in that basis.
- The coefficients $c_{\mu, \nu}^{\lambda}$ of that expansion are known as the Littlewood-Richardson coefficients.

$$
s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

The Littlewood-Richardson Coefficients

- Since the Schur functions are a basis for the symmetric functions, we can ask how to expand the product of Schur functions in that basis.
- The coefficients $c_{\mu, \nu}^{\lambda}$ of that expansion are known as the Littlewood-Richardson coefficients.

$$
s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

- With the Hopf algebraic structure defined before, the coproduct of an arbitrary Schur function in Sym can be given with the aid of the Littlewood-Richardson coefficients:

$$
\Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu:|\mu|+|\nu|=|\lambda|} c_{\mu, \nu}^{\lambda}\left(s_{\mu} \otimes s_{\nu}\right) .
$$

The Pieri Rule

- In the case when $\mu=(n)$, i.e. when one of the partitions indexing the product $s_{\mu} s_{\nu}$ has only one part, there is an easy description of that expansion (equivalently of the Littlewood-Richardson coefficients).

The Pieri Rule

- In the case when $\mu=(n)$, i.e. when one of the partitions indexing the product $s_{\mu} s_{\nu}$ has only one part, there is an easy description of that expansion (equivalently of the Littlewood-Richardson coefficients).
- That description is known as the Pieri rule.

The Pieri Rule

- In the case when $\mu=(n)$, i.e. when one of the partitions indexing the product $s_{\mu} s_{\nu}$ has only one part, there is an easy description of that expansion (equivalently of the Littlewood-Richardson coefficients).
- That description is known as the Pieri rule.

Theorem (Pieri Rule)

The product of the Schur functions $s_{(n)} s_{\mu}$ is the sum of those Schur functions s_{λ} such that the Ferrer diagram of λ can be obtained by adding n boxes to the Ferrer diagram of μ; in such a way that no two boxes are in the same column.

Example

For the partitions $\mu=(2)$ and $\nu=(3,2,2,1)$, the product of the Schur functions $s_{\mu} \cdot s_{\nu}$ is the sum of the Schur functions s_{λ}, such that λ is any of the partitions on the right hand side of the equation below:

Outline

(1) Preliminaries

- Hopf Algebras and Hopf monoids
- Generalized Permutahedra
- Symmetric Functions
(2) Elementary Polytopes
- Motivation
- Elementary Polytopes
(3) Power Polytopes
- Doubilet's Formula and Power Sums
(4) Schur Polytopes
- Winkel's Expansion
- Schur Polytopes
(5) Pieri Rule
- The Pieri Rule
- A Geometrical Pieri Rule

Idea

- We want to visualize the Pieri rule using our geometric versions of the Schur functions.

Idea

- We want to visualize the Pieri rule using our geometric versions of the Schur functions.
- We want to use the coproduct of Per \cong Sym, to do so.

Idea

- We want to visualize the Pieri rule using our geometric versions of the Schur functions.
- We want to use the coproduct of Per \cong Sym, to do so.
- Recall that:

$$
\Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu:|\mu|+|\nu|=|\lambda|} c_{\mu, \nu}^{\lambda}\left(s_{\mu} \otimes s_{\nu}\right) . \quad s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda} .
$$

Idea

- We want to visualize the Pieri rule using our geometric versions of the Schur functions.
- We want to use the coproduct of Per \cong Sym, to do so.
- Recall that:

$$
\Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu:|\mu|+|\nu|=|\lambda|} c_{\mu, \nu}^{\lambda}\left(s_{\mu} \otimes s_{\nu}\right) . \quad s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda} .
$$

- At the same time,

$$
\Delta\left(\mathcal{S}_{\lambda}\right)=\sum_{S \sqcup T=I:|| |=n} \Delta_{S, T}\left(\mathcal{S}_{\lambda}\right)
$$

Idea

- Recall that:

$$
\begin{aligned}
& \Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu:|\mu|+|\nu|=|\lambda|} c_{\mu, \nu}^{\lambda}\left(s_{\mu} \otimes s_{\nu}\right) . \quad s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda} . \\
& c_{(1), \nu}^{\lambda}=1 \Longleftrightarrow \quad\left[\mathcal{S}_{(1)} \otimes \mathcal{S}_{\nu}\right]\left(\Delta\left(\mathcal{S}_{\lambda}\right)\right) \neq 0 . \\
& \Longleftrightarrow \Delta_{\{b\}, A}\left(\mathcal{S}_{\lambda}\right) \neq 0 .
\end{aligned}
$$

Idea

- Recall that:

$$
\begin{aligned}
& \Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu:|\mu|+|\nu|=|\lambda|} c_{\mu, \nu}^{\lambda}\left(s_{\mu} \otimes s_{\nu}\right) . \quad s_{\mu} s_{\nu}=\sum_{\lambda \vdash|\mu|+|\nu|} c_{\mu, \nu}^{\lambda} s_{\lambda} . \\
& c_{(1), \nu}^{\lambda}=1 \Longleftrightarrow \quad\left[\mathcal{S}_{(1)} \otimes \mathcal{S}_{\nu}\right]\left(\Delta\left(\mathcal{S}_{\lambda}\right)\right) \neq 0 . \\
& \Longleftrightarrow \Delta_{\{b\}, A}\left(\mathcal{S}_{\lambda}\right) \neq 0 .
\end{aligned}
$$

- There is a geometric way to find out if $\Delta_{S, T}(\mathfrak{p}) \neq 0$!

Example

- Suppose we want to know the expansion of $s_{(1)} \cdot s_{(2,1)}=h_{1} \cdot s_{(2,1)}$ in the Schur basis:

$$
s_{(1)} \cdot s_{(2,1)}=\sum_{\lambda} c_{(1),(2,1)}^{\lambda} s_{\lambda} .
$$

Example

- Suppose we want to know the expansion of $s_{(1)} \cdot s_{(2,1)}=h_{1} \cdot s_{(2,1)}$ in the Schur basis:

$$
s_{(1)} \cdot s_{(2,1)}=\sum_{\lambda} c_{(1),(2,1)}^{\lambda} s_{\lambda} .
$$

- Take $\lambda=(3,1)$. The drawing below shows that $c_{(1),(2,1)}^{(3,1)}=1$.

Figure: The Schur polytope $\mathcal{S}_{(3,1)}$

Figure: The Schur polytope $\mathcal{S}_{(2,1)}$

Pieri Rule in Higher Dimensions

- The previous approach is difficult to see in high dimensions.

Pieri Rule in Higher Dimensions

- The previous approach is difficult to see in high dimensions.

Theorem (Aguiar, Ardila 2017)

The Hopf monoid of set partitions S, and the Hopf submonoid of $\overline{G P}$ generated by standard permutahedra are isomorphic as set species.

Pieri Rule in Higher Dimensions

- The previous approach is difficult to see in high dimensions.

Theorem (Aguiar, Ardila 2017)

The Hopf monoid of set partitions S, and the Hopf submonoid of $\overline{G P}$ generated by standard permutahedra are isomorphic as set species.

- Thus, we can calculate the coproduct in the poset of set partitions.

Pieri Rule in Higher Dimensions

- All the faces of a Schur polytope are just elements of the poset of admisible diagrams thought of as tabloids.

Figure: The optimized face as a tabloid.

Figure: The Schur polytope $\mathcal{S}_{(3,1)}$.

Pieri Rule in Higher Dimensions

- The coproduct is easy to understand on the faces (tabloids).

Figure: The action of $\Delta_{123,4}$ on a tabloid with 4 apart.

4
Figure: The action of $\Delta_{123,4}$ otherwise.

Pieri Rule in Higher Dimensions

- The way in which the coproduct acts on tabloids induces a labelling on them.

Pieri Rule in Higher Dimensions

Theorem (Benedetti, E., Sanchez)

Let $\lambda \vdash n$ be a partition. Then, there is a labelling of the poset S of set compositions of $[n]:=\{1, \ldots, n\}$ such that:
(1) The set of faces of \mathcal{S}_{λ} is a subposet P.
(2) There is a sign reversing involution ϕ on the filter generated by $D_{\lambda^{-}}$ within P; with λ^{-}a diagram obtained by removing a block from λ, and λ^{-}not a partition.
(3) The subposet P contains the set of faces of $\mathcal{S}_{\lambda^{-}}$for all the partitions λ^{-}so that λ^{-}a diagram obtained by removing a block from λ.
(4) All of the elements of P are either of the form of 2 or 3 .

